Resting-state functional connectivity as a marker of disease progression in Parkinson's disease: A longitudinal MEG study☆
نویسندگان
چکیده
The assessment of resting-state functional connectivity has become an important tool in studying brain disease mechanisms. Here we use magnetoencephalography to longitudinally evaluate functional connectivity changes in relation to clinical measures of disease progression in Parkinson's disease (PD). Using a source-space based approach with detailed anatomical mapping, functional connectivity was assessed for temporal, prefrontal and high order sensory association areas known to show neuropathological changes in early clinical disease stages. At baseline, early stage, untreated PD patients (n = 12) had lower parahippocampal and temporal delta band connectivity and higher temporal alpha1 band connectivity compared to controls. Longitudinal analyses over a 4-year period in a larger patient group (n = 43) revealed decreases in alpha1 and alpha2 band connectivity for multiple seed regions that were associated with motor or cognitive deterioration. In the earliest clinical stages of PD, delta and alpha1 band resting-state functional connectivity is altered in temporal cortical regions. With disease progression, a reversal of the initial changes in alpha1 and additional decreases in alpha2 band connectivity evolving in a more widespread cortical pattern. These changes in functional connectivity appear to reflect clinically relevant phenomena and therefore hold promise as a marker of disease progression, with potential predictive value for clinical outcome.
منابع مشابه
Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملIncreased cortico-cortical functional connectivity in early-stage Parkinson's disease: An MEG study
We set out to determine whether changes in resting-state cortico-cortical functional connectivity are a feature of early-stage Parkinson's disease (PD), explore how functional coupling might evolve over the course of the disease and establish its relationship with clinical deficits. Whole-head magnetoencephalography was performed in an eyes-closed resting-state condition in 70 PD patients with ...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملCognitive decline in Parkinson's disease is associated with slowing of resting-state brain activity: a longitudinal study.
The pathophysiological mechanisms of Parkinson's disease (PD)-related dementia (PDD) are still poorly understood. Previous studies using electroencephalography (EEG) and magnetoencephalography (MEG) have demonstrated widespread slowing of oscillatory brain activity as a neurophysiological characteristic of PD-related dementia. Here, we use MEG to longitudinally study early changes in oscillator...
متن کاملA three dimensional anatomical view of oscillatory resting-state activity and functional connectivity in Parkinson's disease related dementia: An MEG study using atlas-based beamforming☆
Parkinson's disease (PD) related dementia (PDD) develops in up to 80% of PD patients. The present study was performed to further unravel the underlying pathophysiological mechanisms by applying a new analysis approach that uses an atlas-based MEG beamformer to provide a detailed anatomical mapping of cortical rhythms and functional interactions. Importantly, we used the phase lag index (PLI) as...
متن کامل